Arquivo da tag: bioquímica

As bacterias e suas caracteristicas

Os procariotos são os menores organismos e os mais simples estruturalmente. Em termos evolutivos, eles são também os mais antigos organismos da Terra (foram encontrados fósseis de cerca de 3,5 bilhões de anos). E, consistem de duas linhagens distintas: Bacteria (ou eubactéria) e Archea.
Habitam o solo, superfície das águas e tecidos de outros organismos (vivos ou em decomposição). Pequeno número de espécies que habitam ambientes de condições extremas.
Alta proporção habita ambientes em condições extremas: halófilas (Mar Morto), termoacidófilas (60 a 80ºC, sulfobactérias) e metanogênicas (pântanos, interior do tubo digestivo de insetos (cupins) e herbívoros)
Os procariotos não possuem núcleo organizado nem organelas celulares envoltas por membranas. A maior parte de seu material genético está incorporada em uma única molécula circular de DNA de fita dupla, freqüentemente, fragmentos adicionas de DNA circular, conhecidos como plasmídeos, também estão presentes.
No citoplasma, além de sais minerais, aminoácidos, pequenas moléculas, proteínas, açúcares ainda são encontradas partículas de ribossomos, grânulos de material de reserva (amido, glicogênio, lipídeos ou fosfatos).
Exceto os micoplasmas, todos os procariotos têm paredes celulares rígidas. Nas Bacteria, esta parede celular é composta principalmente de peptidioglicanos. As bactérias Gram-negativas, com parede celular que não fixa o corante cristal-violeta. Possuem uma camada externa de lipopolissacarídeos e proteínas, sobre a camada de peptideoglicano, denominada cápsula, encontrada principalmente nas bactérias patogênicas, protegendo-as contra a fagocitose.
As células procarióticas não apresentam vacúolos, porém podem acumular substâncias de reserva sob a forma de grânulos constituídos de polímeros insolúveis. São comuns polímeros de glicose (amido e glicogênio), ácido -hidroxibutírico e fosfato.
As células de procariotos podem ter forma de esfera (coco), de bastão (bacilos) ou de espiral (espirila). Todos os procariotos são unicelulares, mas se a célula não se separa completamente após a divisão celular, as células filhas ficam grudadas em grupos finos, filamentos ou massas sólidas.
As células bacterianas são pequenas e medidas em micrômetros (µm), 1µm equivale 0,001mm. A menor bactéria tem 0,2 µm (Chlamydia), há células de Spirochaeta com 250 µm de comprimento. A maior bactéria conhecida é a Epulopiscium fishelsoni que foi encontrada no Mar Vermelho e na costa da Austrália no intestino de um peixe com mais de 600 µm de comprimento. Na maioria das vezes o tamanho médio de uma bactéria é de 1-10 µm.
Muitos procariotos possuem um flagelo e, portanto, são móveis; a rotação do flagelo movimenta as células através do meio. As bactérias que apresentam um único flagelo são denominadas monotríquias e bactérias com inúmeros flagelos são denominadas peritríquias.
Procariotos podem ainda possuir fímbrias ou pili. As fímbrias ou pili são estruturas curtas e finas que muitas bactérias gram-negativas apresentam em sua superfície, estão relacionadas com a capacidade de adesão. Há a fímbria sexual, necessária para que bactéria possa transferir material genético no processo denominado conjugação.
Certas espécies de bactérias tem a capacidade de formar endósporos, altamente resistentes ao calor, dessecação e outros agentes físicos e químicos, capaz de permanecer em estado latente por longos períodos e de germinar dando início a nova célula vegetativa. Isso permitem que a célula sobreviva em condições desfavoráveis.
Muitos procariotos se reproduzem assesuadamente por simples divisão, também denominada fissão binária, onde uma célula, divide-se ao meio, dando origem a duas células-filhas iguais.

Acesse o blog http://books.jar.io para baixar ebooks free em diversos formatos.
Acesse http://torrents.jar.io para acessar diversos materiais disponíveis em torrents (magnetliks).
O blog http://ervas.jar.io publica sobre diversas metodologias de cultivos e propriedades das ervas.

Prova do Indol


O objetivo é determinar a capacidade do microrganismo degradar o aminoácido triptofano (presente em quase todas as proteínas) até indol.
O triptofano é um aminoácido essencial que pode sofrer oxidação pelas atividades enzimáticas de algumas bactérias. A conversão do triptofano em produtos metabólicos é mediada pela enzima triptofanase.
Como a capacidade de hidrolisar o triptofano com produção de indol (não é utilizado e acumula-se no meio) não é uma característica de todos os microrganismos serve como marcador bioquímico. Há microrganismos que não metabolizam o triptofano ou então fazem metabolização completa desse aminoácido sem produzir indol.
Utiliza-se um meio de cultura que contenha o aminoácido triptofano por ex.: água peptonada. Após o crescimento pesquisa-se a presença de indol adicionando o reagente de Kovac’s (cor amarelo) ao longo das paredes do tubo, de modo que não se misture com o meio de cultura. Este reagente reage com o indol produzindo um composto rosado.
As culturas que produzem um anel avermelhado na superfície do meio após adição do reagente são indol positivo. A persistência da coloração amarela do reagente demonstra que o substrato triptofano não foi hidrolisado a indol e indica uma reação negativa.

Acesse o blog http://books.jar.io para baixar ebooks free em diversos formatos.
Acesse http://torrents.jar.io para acessar diversos materiais disponíveis em torrents (magnetliks).
O blog http://ervas.jar.io publica sobre diversas metodologias de cultivos e propriedades das ervas.

Prova de Kligler Iron Agar ou de Triple Sugar Iron Agar TSI


Esta prova é, geralmente, usada para diferenciar os diferentes géneros das Enterobacteriaceae e para distinguir esta família de outros bacilos Gram negativo de origem intestinal. Esta diferenciação é feita atendendo às diferenças na fermentação dos hidratos de carbono presentes no meio e à produção de sulfureto de hidrogénio (H2S). Tanto o meio agar TSI (triple sugar iron) como o agar Kligler Iron contêm glicose em pequena concentração (0,1%), lactose em concentração superior (1%), o indicador de pH, vermelho de fenol, para detectar a produção de ácidos resultantes da fermentação dos hidratos de carbono, tiossulfato de sódio, substrato para a produção de H2S, e sulfato de ferro para a detecção desse produto final. A diferença entre estes dois meios diferenciais é que o TSI possui mais um açúcar, a sacarose, em concentração igual à da lactose (1%). Ambos os meios são inoculados por picada, no cilindro e por estria, na rampa. É essencial que as culturas sejam observadas após 18 a 24 h de incubação para evitar que os hidratos de carbono sejam completamente utilizados e que ocorra degradação das peptonas, formando produtos finais alcalinos. É na rampa que se faz a leitura da lactose e da sacarose, no fundo do cilindro a da glicose e no meio do cilindro a de H2S. Após incubação podem ser determinadas as actividades fermentativas, a produção de gás e a produção de H2S, podendo ocorrer vários resultados: Cilindro ácido (amarelo) e rampa alcalina (vermelha): Só a glicose foi fermentada. Os microrganismos degradam, preferencialmente, a glicose em primeiro lugar, mas como este substrato está presente em concentração mínima, a quantidade de ácido produzida é limitada e é rapidamente oxidada na superfície da rampa. Por outro lado, as peptonas do meio são também usadas na produção de substâncias alcalinas. No cilindro, a reacção ácida é mantida devido à tensão reduzida do oxigénio e ao crescimento mais lento dos microrganismos. O indicador, vermelho de fenol, muda para amarelo devido à persistência da formação de ácido no cilindro. Cilindro ácido (amarelo) e rampa ácida (amarela): Ocorreu a fermentação da lactose e/ou da sacarose, para além da glicose. Como as duas primeiras substâncias estão presentes em altas concentrações são substratos para a actividade fermentativa contínua com manutenção da reacção ácida (cor amarela) em todo o meio (rampa e cilindro). Produção de gás: Nota-se pela ocorrência de fracturas no meio de cultura. Produção de H2S: Ocorre enegrecimento, principalmente na zona intermédia do cilindro. Isto deve-se ao facto do microrganismo em estudo ser capaz de produzir sulfureto de hidrogénio (H2S), que se conjuga com um composto de ferro existente no meio, dando origem a sulfureto de ferro que, sendo insolúvel, precipita. Cilindro alcalino (vermelho) e rampa alcalina (vermelha) ou inalterado (tijolo): Não ocorreu fermentação dos hidratos de carbono presentes no meio, nem produção de gás ou de H2S. As peptonas do meio podem ser catabolizadas sob condições anaeróbias e/ou aeróbias, resultando num pH alcalino devido à produção de amónia. Se só ocorrer degradação aeróbia das peptonas, a reacção alcalina só é evidenciada na superfície da rampa. Se houver degradação aeróbia e anaeróbia das peptonas, a reacção alcalina é visível em todo o meio.

Acesse o blog http://books.jar.io para baixar ebooks free em diversos formatos.
Acesse http://torrents.jar.io para acessar diversos materiais disponíveis em torrents (magnetliks).
O blog http://ervas.jar.io publica sobre diversas metodologias de cultivos e propriedades das ervas.

TÉCNICO EM ANÁLISES CLÍNICAS

TÉCNICO EM ANÁLISES CLÍNICAS. O técnico auxilia e executa atividades padronizadas de laboratório – automatizadas ou técnicas clássicas – necessárias ao diagnóstico, nas áreas de parasitologia, microbiologia médica, imunologia, hematologia, bioquímica, biologia molecular e urinálise. Continue lendo